Advanced Guide to Rotating Biological Contactors (RBC's)

Rami Elias Kremesti M.Sc., CSci, CEnv, CWEM

KREMESTI ENVIRONMENTAL CONSULTING

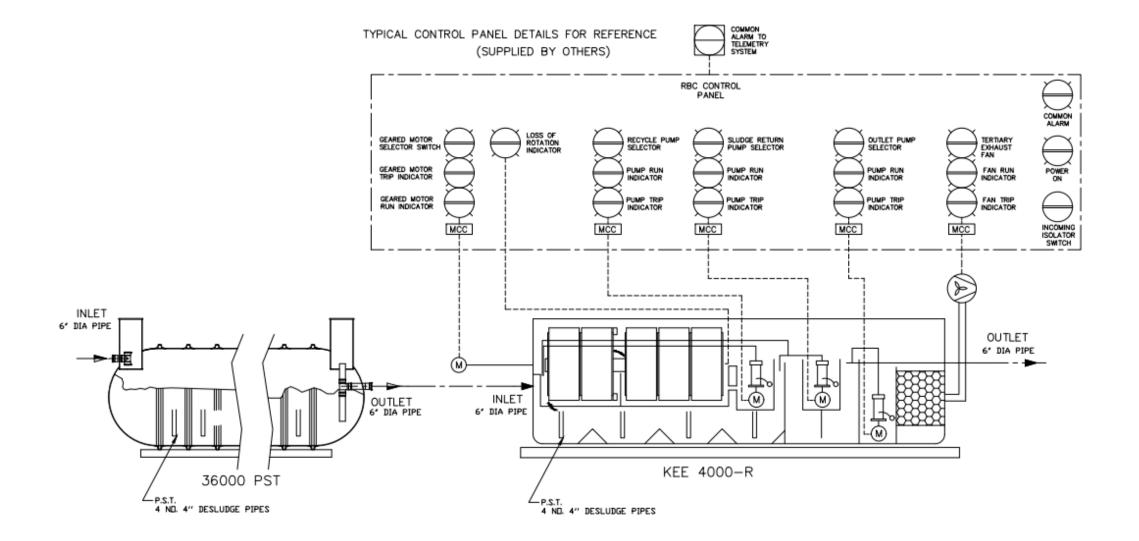
PASSION FOR CHEMISTRY

Introduction

- An RBC is an aerobic system that treats biological waste water (sewage) using fixed biofilm that grows on plastic media known as contactors.
- The biofilm treats dissolved BOD and Ammonia through Nitrification
- Some De-nitrification can happen in the lower layers of the Biofilm
- The active bacteria breathe 21 percent Oxygen when the biofilm carrying media is in the air and chomp on BOD and Ammonia when under water
- The heart of the RBC is a solid steel rotor carrying plastic media corrugated sheets, which is rotated slowly using a low-power consuming motor/gearbox.
- The rotor is held in place using robust low friction bearings

Example of RBC Rotor in GRP Tank

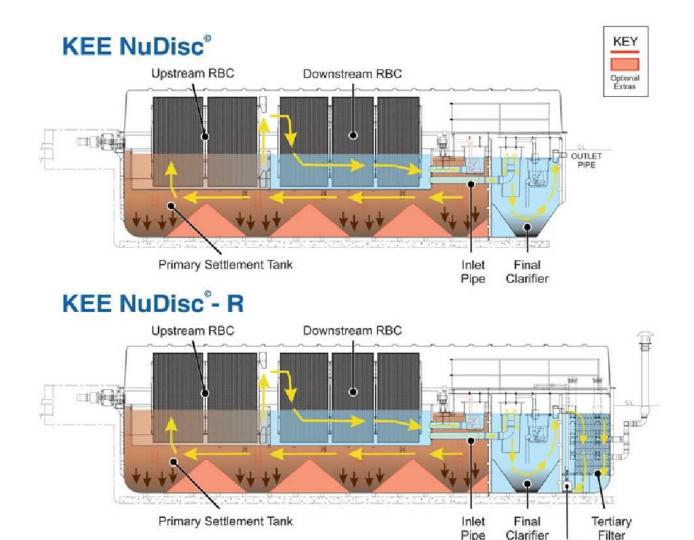
RBC Rotor Outside the Tank


Designing an RBC

- The waste water flow and organic load (BOD and Ammonia) need to be established
- The effluent treatment parameters are defined
- A Specific load requires a certain surface area of media to treat it
- BOD removal remove requires approximately 3 hours of Hydraulic Retention Time
- Calculations are made to size the RBC and define pre and post treatment steps
- Low Ammonia requires dense De-nitrification stage as Ammonia nitrifying bacteria are slow to grow and form less dense biofilm
- Low Phosphate requires dosing of chemicals such as Poly Aluminium Chloride
- Low TVC's (Total Viable Count) i.e low bacterial levels in the effluent require a disinfection stage using chlorine or UV

Designing an RBC - II

- The dry weight of the rotor + biomass is calculated and the required torque to rotate this wet live rotor defines the size of the gearbox
- It is a very good idea to oversize the rotor gearbox.
- Lower ammonia effluent parameters may require a second pass of the effluent water in which case an effluent recycling pump is designed
- Amounts of sludge generated are used to size the sludge recycling pump and the define the desludging/descumming periods


Process/Piping Instrumentation Diagram

4-In-1 RBC Packaged Systems

- Pre-Settling tank + RBC secondary stage + Final Settling tank + Trickling Filter
- 20-30-5 BOD : SS : Ammonia easily achievable

3-In-1 and 4-In-1 Packaged RBC's Schematic

Commercial Suppliers

- <u>Kingspan</u> home of the "Klargester" aka the Shit chopper
- KEE Process: <u>www.keeservices.com</u>
- Evoqua: <u>www.Evoqua.com</u>
- Mecana: <u>https://www.mecana.ch/en/technologies/rotating-biological-contactor</u>
- Jacopa https://jacopa.com/rbc/

Installation and Commissioning

- Must be installed level and square on concrete slab in the excavation if underground model
- Connect piping
- While backfilling with concrete must fill up PST and FST equally with water to prevent internal hydraulic pressures on GRP walls and uplift forces from liquid concrete
- Avoid sharp objects that can puncture the GRP tank
- Do Rotation check on Rotor and the pumps

Operation and Maintenance

- Must be on all the time 24/7 otherwise the load gets unbalanced
- Keep bearings well greased
- Make sure media are tight and no bolts are loose
- Keep FOG away from the biofilm which can choke it
- Desludge/descum when sludge level gets high and scum gets deep
- Keep the gearbox nice, dry and well oiled/greased
- Respond immediately when rotation is interrupted
- Remove any solid waste such as paper towels lodged in the RBC media
- No harsh chemicals allowed down the drain

Advantages

- Low Energy Consumption Gearbox
- No noisy expensive blowers
- Self Regulating: more food more biofilm, less food less biofilm
- No smell, no little annoying flies as most RBC's are covered
- Simple, robust, proven design
- Low sludge production as biofilm that sloughs off is already held together by bacterial slime
- Underground designs are very unobtrusive visually
- Modular and can be installed in Parallel to treat up to PE=5000

Advantages-II

- No seeding required biomass grows naturally in 4-6 weeks
- Can last up to 40 years design life
- Damaged GRP sections can be repaired using fiberglass and resin
- Packaged Units can be shipped world wide on flat open containers
- GRP shells are water and corrosion proof

Examples of Underground Designs

A Smaller Modular Unit with External Gearbox

Massive Modular GRP Tank Unit

Massive 4-in-1 Packaged RBC

Disadvantages

- Any maintenance on the RBC rotor (which is rare) requires a crane lift
- Rotor must be level when it leaves the factory and checked with Site Acceptance check otherwise stress on gearbox
- Replacement media can be expensive
- Not suitable for areas prone to flooding unless an IP68 gearbox is chosen.
- Sites with high ground water level can push the RBC out of the ground if not properly fastened

DIY Low Cost RBC Construction Manual

Low Cost DIY RBC from EAWAG

https://www.eawag.ch/fileadmin/Domain1/Abteilungen/sandec/schwe rpunkte/ewm/STUN/Nitrogen_pdfs/STUN_RBC_construction_manual.p df

Low Cost DIY RBC

Decarbonization of the System for NetZero

- A solar powered RBC system can be designed to reduce the CO₂ impact of an RBC
- Onsite sludge treatment with flocculant can reduce the water content of the sludge and hence reduce desludging frequency

Comments/Suggestions

Contact me at

rami@kremesti.com

KREMESTI ENVIRONMENTAL CONSULTING

PASSION FOR CHEMISTRY

The Ultimate Alchemy is Enlightening the Soul

